
Dynaban, an Open-Source Alternative Firmware
for Dynamixel Servo-Motors

Rémi Fabre, Quentin Rouxel, Grégoire Passault, Steve N’Guyen, Olivier Ly

Rhoban Football Club Team,
LaBRI, University of Bordeaux, France

{remi.fabre,quentin.rouxel}@labri.fr

Abstract. In this paper, we present an alternative open-source firmware
for the Dynamixel MX-64 servo-motor. We discuss software features to
fully exploit the hardware capabilities of the device. In order to enhance
the default controller, a friction model and an electric model of the mo-
tor are embedded into the firmware. The parameters of the model are
found using a black-box optimization algorithm. A feed-forward method
is proposed to follow position, speed and torque trajectories. The ap-
proach is tested with a highly dynamic kick movement on our humanoid
soccer robot Sigmaban whose torque trajectories are computed using a
classic rigid body inverse dynamics. The comparison between the default
control strategy and the proposed one shows significant improvements in
terms of accuracy, delay and repeatability.

Keywords: Open-Source, Model-based control, RoboCup, Humanoid
Robot

1 Introduction

Servo-motors offer a full turnkey solution for controlling electric motors and
are heavily used in the field of robotics. Commercial servo-motors are the most
common, but their proprietary firmware can’t be enriched by the community
and limits the realm of possible. The default control approach typically relies
on angular feed-back and a Proportional-Integral-Derivative (PID) controller.
This method is easy to use and offers good results when static positions are
needed but is unsatisfactory when following complex trajectories which tend to
be delayed and distorted. In particular, humanoid robots often call for precise,
highly dynamic and torque-heavy movements. Achieving these with the out-of-
the-box controller has proven to be difficult.

Instead of waiting for an angular error to appear, a feed-forward (FF) ap-
proach preemptively sends a command that produces the predicted torque to
follow a given trajectory. To achieve that, the internal behavior of the motor
must be modeled and the external torques and moments must be accounted for.
The PID controller is only used to compensate unforeseen perturbations and
model’s inaccuracies.

2 R. Fabre, Q. Rouxel, G. Passault, S. N’Guyen, O. Ly

In this paper we present an open-source firmware1 for the Dynamixel MX-64
servo-motor that is fully compatible2 with the default one. Advanced features
and possible enhancements are discussed but the main focus is given to the
embedded implementation of a feed-forward control strategy. A friction model
and an electric model of the motor are chosen. A wide set of detailed measures
is taken and the CMA-ES evolutionary algorithm is used to identify the model’s
parameters. As application, a mechanical model of the humanoid robot Sigmaban
[1] is used and the inverse dynamics of a football kick are computed3. Finally,
the kick is played on the robot and the impact of the method is quantified.

1.1 Related Works

Open projects related to servo-motors have been around for years. OpenServo4

is a mature project that offers low cost electronic boards but uses an 8-bit micro-
controller that lacks the computational power of the ARM cortex M3 found in
the Dynamixel. The DDServo project5 [7] provides open hardware and firmware
for the RX-28 and RX-64 motors, advanced control techniques are discussed
and simulated but are not implemented. The Morpheus firmware6 is an alterna-
tive firmware for the AX12 servomotor. A detailed friction characterization was
carried by [6] and was used to choose a friction model. A model of the AX12
servo-motor was detailed in [4]. Schwarz and Behnke [3] use an ideal DC motor
model and friction model covering the Stribeck effect.

The presented adds the inertia of the motor and its gear-box which, given
the high ratio of the gear-box, appears to be meaningful. The main novelty of
the proposed approach is the integration of a model-based feed-forward control
into the original micro-controller instead of using the servo-motor as a black-box.
Moreover, an offline evolutionary algorithm7 is used in order to fit the model to
an arbitrary rich set of measures. The quality of the results is of an order of
magnitude better than what was achieved by hand-tuning the parameters.

2 An Open Source Firmware

Current Sensing: An interesting announced feature of the MX-64 series is
the current sensing. Since the current is proportional to the torque, one would
think that the servo-motor can be torque controlled. Unfortunately, testing the
servo-motor with its default firmware proved otherwise. A high precision resis-
tor of 5mΩ called rSense is connected in series with the motor. The resistor’s
voltage is amplified and read through an Analog to Digital Conversion (ADC)

1 Dynaban: https://github.com/RhobanProject/Dynaban
2 http://support.robotis.com/en/product/dynamixel/mx_series/mx-64.htm
3 Rigid Body Dynamics Library: http://rbdl.bitbucket.org/
4 OpenServo project: http://www.openservo.com/
5 DDServo project: https://github.com/wojtusch/DDServo
6 Morpheus firmware: https://actuated.wordpress.com/ax12firmware/
7 CMA-ES Library: https://www.lri.fr/~hansen/html-pythoncma/

https://github.com/RhobanProject/Dynaban
http://support.robotis.com/en/product/dynamixel/mx_series/mx-64.htm
http://rbdl.bitbucket.org/
http://www.openservo.com/
https://github.com/wojtusch/DDServo
https://actuated.wordpress.com/ax12firmware/
https://www.lri.fr/~hansen/html-pythoncma/

Dynaban, Open-Source Alternative Firmware for Dynamixel Servo-Motors 3

pin. The current appears to be very noisy and asymmetrical with the sign of the
rotational speed. External measures showed that the current sensing issues are
hardware related. Much better results were recorded when the rSense was held
a few centimeters away from the motor and connected with copper cables. In
the presented work, the current measure is considered unreliable as a feed-back
information with the default electronics and thus not used.

High Precision and High Frequency Measures: When recording a phys-
ical value from a servo-motor with the default firmware, the delay between the
actual measure and the moment the read is performed through the serial bus
is poorly known. Moreover, the frequency of the measure is dependent on the
communication bus. An open firmware allows for very specific, hardware time-
stamped, high frequency measures. For instance, it is possible to read the current
position at a frequency of 10 kHz, store the values in RAM for the duration of
the experiment and send the values to the user through the serial port.

Model Based Estimation of the Torque Produced by the Motor:
While the current measure proved to be unreliable, it is still possible to estimate
the produced torque with a model-based approach. Knowing the voltage applied
by the Pulse Width Modulation (PWM) signal and knowing the current speed,
the model can estimate the electrical torque created by the motor and the friction
torque. These values are updated at 1kHz and are available to the user through
the communication protocol.

The average speed is used where the instantaneous speed is needed, therefore
a strong trade-off between precision and delay is present. Taylor expansion based
algorithms, and Kalman filter based algorithms [2] are a few options that may
enhance the speed estimation in a future work.

Feed-Forward Trajectory Control Mode: The embedded electrical and
friction models can be used to follow position, speed and torque trajectories
simultaneously. Knowing ω(t), ω(t + dt) and τo(t + dt) the needed command
voltage can be calculated:

u(t+ dt) = ke × ω(t) +
R

ke
× (τo(t) + τa(t) + τf (t)) (1)

τa(t) =
ω(t+ dt) − ω(t)

dt
× I0 (2)

where ω is the rotational speed, τo is the output goal torque set by the user, τa
is the torque needed to accelerate the rotating parts of the motor which moment
of inertia I0 is a model parameter (empty shaft, gear box) and τf is the friction
torque given by the friction model. R and ke are constants of the DC motor.

The user is responsible for providing ahead of time a position and a torque
trajectory to the firmware. The torque trajectory provided is the torque needed
to accelerate the objects attached to the motor and also needed to oppose the
torques applied on the motor’s shaft (weight, inertia, contacts). The firmware is
responsible for deducing the voltage command needed to accelerate the motor
rotating parts (shaft, gear box).

The chosen trajectory representation is polynomial. The trajectories are com-
municated to the firmware as a 4th order polynomial for the trajectory position

4 R. Fabre, Q. Rouxel, G. Passault, S. N’Guyen, O. Ly

and a 4th order polynomial (5 float values) for the torque trajectory. The speed
trajectory is internally deduced by derivation of the first polynomial. Trajec-
tories are typically 150ms long although the duration is user-configurable for
each trajectory. A second set of polynomials can be buffered into the firmware
to allow for continuous transitions between several trajectories.

In this mode, the speed is never deduced from the encoder, making the
model’s contribution to the voltage command a full open-loop feed-forward ap-
proach. The loop is closed in 2 ways:

A PID controller whose goal is solely to follow the position trajectory is used
in parallel. The actual voltage command is the sum of the two contributions.
(PID+FF) If the PID command is strongly opposite to the model-based com-
mand, the second will be ignored until their contributions are compatible. To
avoid instability injections with this method, an hysteresis is used to decide the
switching ON or OFF of the model contribution.

The user can take corrective actions in the next trajectory (150ms later) and
even choose to stop the current trajectory playing at any time.

3 Models

3.1 DC Motor

The chosen model for the Direct Current (DC) motor has only 2 parameters
and expresses the classical linear trade-off between speed and torque at a given
voltage U . R is the terminal resistance and ke is the back-EMF constant

U = τ × R

ke
+ ke × w (3)

3.2 Friction

Fig. 1: Classic friction model

-50

-40

-30

-20

-10

 0

 10

 20

 0 0.5 1 1.5 2 2.5 3

An
gu

la
r P

os
iti

on
 (d

eg
re

es
)

Time (seconds)

Right Knee
Goal Trajectory
Mean PID Only

Mean PID + Feed Forward

Fig. 2: Average right knee trajectory

In [6] it was shown that the model (Fig. 1) was a good fit for geared transmis-
sions at low speeds but failed at high speeds. The non-linearity between friction
torque and speed that is responsible for the mismatch was not observed in the
speed range of the motor, probably because the maximum speed of the motor

Dynaban, Open-Source Alternative Firmware for Dynamixel Servo-Motors 5

(410 deg/s) is low enough to avoid it. Therefore, the classical Stribeck effect
based friction model was chosen. In order to simplify the model and reduce its
computational impact on the micro-controller, the parameter δ was fixed to 1 in
equation 4. The same simplification was done by [3].

τf = kvis × ω − sign(ω) × (β × τs + (1 − β) × τcc) β = e
−| ω

ωlin
|δ

(4)

where ωlin is the parameter defining the area of influence of the Stribeck effect,
kvis is the viscous friction constant and τcc satisfies: τf (ωlin) = τc

4 Model Fitting

In order to quantify the validity of the actuator models and determine its pa-
rameters the following steps are followed:

A set of 113 measures of 1 second each are performed on a MX-64 servo-motor
with nothing attached to its shaft. Predefined voltage command trajectories are
implanted in the firmware and are followed and recorded with a 0.1ms precision
hardware timer. Three types of command trajectories are used, flat step com-
mands (in order to have constant speeds), saw-tooth patterns and brutal step
changes (in order to create important accelerations).

The exact same measures are recorded again on the same MX-64 with a load
of approximately 0.28kg at 12 centimeters.

A simple motor simulator is implemented using the electrical model and
the friction model. The simulator is used to replay the voltage commands and
estimate the motor position. A Root Mean Square (RMS) error is then computed
for each one of the 226 measures. Therefore, a fitness function is computed. The
function takes 7 model parameters (ke, r, kvis, τs, τcc, wlin, I0) and returns a
score quantifying the quality of the model relative to a set of measures.

The CMA-ES python implementation is then used in order to maximize the
fitness function. A previously hand-tuned set of model parameters is used as the
starting point. Activating the restart strategy, specifying a standard deviation
for each parameter and having a good starting set of model parameters are the
three most important options to get the algorithm to perform well. The best
match has a score 56 times better than the hand tuned solution.

5 Experimenting a Highly Dynamic Kick on Sigmaban

A dynamic kick motion is generated off-line. Standard inverse dynamics are
used on a robot model to compute a torque trajectory for all degrees of freedom.
The robot begins and ends the movement in single support on the left leg in a
statically stable posture. The positions are sent to the motors with the classic
PID approach by updating the goal position periodically. The read/write loop
frequency is 100Hz. The position trajectories and the torque trajectories are
fitted with cubic polynomials of 150ms each and feed-forwarded to the servo-
motors. The PID and the models are used by the firmware. In both cases, the

6 R. Fabre, Q. Rouxel, G. Passault, S. N’Guyen, O. Ly

PID gains are set to P = 16, I = 1, D = 0. The integral gain heavily reduces
the static error on the starting position. 10 kicks are recorded for each method.

Note that if a control method was capable of reproducing a delayed version of
the command without deforming it, complex dynamic movements could still be
performed as long as the delay remains constant and identical for every degree of
freedom (DoF). Therefore, a raw RMS error between the goal position and the
measured position is not enough to quantify the quality of a control strategy.

For each measure and for each DoF, the measured positions are shifted along
the time axis until their correlation with the goal trajectory is maximum. The
shift value expresses the time delay, while the RMS error of the shifted measures
expresses the deformation relatively to the ideal trajectory. The delay and the
deformation are averaged over the 10 measures.

The Cartesian trajectories of the right foot and the trunk are considered in
a similar way.

 0

 0.2

 0.4

 0.6

 0.8

 1

left_ankle_pitch

left_ankle_roll

left_hip_pitch

left_hip_roll

left_hip_yaw

left_knee

right_ankle_pitch

right_ankle_roll

right_hip_pitch

right_hip_roll

right_hip_yaw

right_knee

Ti
m

e
D

el
ay

 (
se

co
n

ds
)

PID
PID + Feed Forward

Fig. 3: Delays (and standard deviation) for each DoF and control strategy

The delay appears to be significantly reduced when the feed-forward control is
used. The right knee, which is the DoF performing the most dynamic trajectory,
has an average delay of 86 ms with the PID only approach whereas its average
delay is −8ms with the feed-forward approach. The average delay for all DoFs
with the PID only approach is 91ms against 23ms with the feed-forward control.

Note that the DoFs left ankle roll and left knee have almost flat position
trajectories during the kick, therefore their calculated delay is very noise depen-
dent and will be ignored in the results interpretation. This is consistent with the
fact that the delay’s standard deviation is several times higher with these two
DoFs. Also, note that a negative delay can be measured when the feed-forward
overcompensates the command.

Once the measures are time shifted, the RMS error gap between the two
approaches reduces. The first strategy (PI) has an average deformation error
value of 0.95 against 0.74 for the second (PI + FF). Moreover, while the standard
deviation of the deformation is comparable between the 2 approaches for low
torque DoFs (kicking right leg servos), it is 3 times higher with the PID approach
for high torque DoFs (supporting left leg servos). Therefore, the model-based
control offers a better repeatability, especially when the applied torques are
high.

Dynaban, Open-Source Alternative Firmware for Dynamixel Servo-Motors 7

 0

 1

 2

 3

 4

 5

left_ankle_pitch

left_ankle_roll

left_hip_pitch

left_hip_roll

left_hip_yaw

left_knee

right_ankle_pitch

right_ankle_roll

right_hip_pitch

right_hip_roll

right_hip_yaw

right_knee

An
gu

la
r R

M
SE

PID raw
PID + Feed Forward raw

PID shifted
PID + Feed Forward shifted

Fig. 4: RMS error (in degrees) (and standard deviations) for each DoF and con-
trol strategy, with and without time shifting

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 0 0.5 1 1.5 2 2.5 3

-50

 0

 50

 100

An
gu

la
r

Po
si

tio
n

(d
eg

re
es

)

Ca
rt

es
ia

n
Po

si
tio

n
(m

ill
im

et
er

s)

Time (seconds)

Foot and Trunk Cartesian Trajectories
Trunk Axis X Goal

Trunk Axis X PID Only
Trunk Axis X PID + Feed Forward

Foot Pos X Goal
Foot Pos X PID Only

Foot Pos X PID + Feed Forward

Fig. 5: Average trajectories in Cartesian space of the trunk orientation and kick-
ing foot position for each control strategy

When considering the Cartesian trajectory of the right foot and of the trunk,
the average delay found for the PID approach is 80ms against 0ms with the feed-
forward (here, the delay was found by minimizing the RMS while time-shifting
the curve with a step of 5ms). The RMS error of the shifted PID trajectory is
46% higher than the RMS error of the second method (0.57 against 0.39). This
value represents the deformation of the overall kick motion.

The enhancements in terms of deformation were expected. A PI controller
creates a non-constant delay, which increases when high speed variations and
high torques are applied, thus deforming the output trajectory. In contrast, the
feed-forward approach preemptively sends a command to achieve the needed
speed to follow the trajectory while compensating for output torques, inertia
and friction.

Notice that the whole experiment could have benefited from an external
ground-truth regarding the torque and position measures. The remaining errors
can be explained as being the sum of the models imperfections, both by the
model itself not matching the reality and the model parameters identification.
Specifically, the temperature’s influence on the system was not included and
the physical model of the robot was approximate. Moreover, the DC motor
manufacturer states8 that the tolerance of the motor’s characteristics can reach

8 Motor data and operating ranges of maxon DC motors: http://www.maxonmotor.
com/academy

http://www.maxonmotor.com/academy
http://www.maxonmotor.com/academy

8 R. Fabre, Q. Rouxel, G. Passault, S. N’Guyen, O. Ly

+/-10%, important hardware discrepancies between servo-motors were indeed
measured. Therefore, an improvement of the presented method would be to
find a set of model parameters for each servo-motor. Finally, the backlash was
not accounted for. While most of the backlash comes from the gearbox and is
detected by the encoder, the short and brutal modifications of friction created
by the backlash are not handled. A backlash hysteresis model [5] could be tried
in future work.

6 Conclusion

The open source firmware for the MX-64 servo-motor presented in this paper
is meant to be a tool offering a complete control over the actuator. A simple
electric DC motor model and a traditional friction model are embedded into the
firmware. The parameter identification method, which uses a black box opti-
mization algorithm and a wide set of generic measures, proved to be much more
accurate than what was achieved through specific measures and hand tuning. A
combined feed-forward and feed-back implementation is tested on the humanoid
robot Sigmaban with a highly dynamic football kick whose inverse dynamics
is calculated. When compared to a PI controller, the proposed approach ab-
sorbs almost all the delay, significantly reduces the deformation and enhances
the repeatability of heavy torque movements.

7 Acknowledgment

The authors would like to thank Stéphane Ygorra for his help and guidance in
the project.

References

1. Fabre, R., Gimbert, H., Gondry, L., Hofer, L., Ly, O., N’Guyen, S., Passault, G.,
Rouxel, Q.: Rhoban football club team - description paper (2016)

2. M.-Ch. Pan, Y.F.L.: Further exploration of vold–kalman-filtering order tracking
with shaft-speed information—ii: Engineering applications. In: Mechanical Systems
and Signal Processing Mechanical Systems and Signal Processing (2005)

3. M. Schwarz, S.B.: Compliant robot behavior using servo actuator models identified
by iterative learning control. In: Robocup International Symposium (2013)

4. Mensink, A.: Characterization and modeling of a dynamixel servo. In: Technical
report, University of Twente (2008)

5. N. J. Ahmad, F.K.: Adaptive control of systems with backlash hysteresis at the
input. In: American Control Conference (1999)

6. R. Waiboer, R. Aarts, B.J.: Velocity dependence of joint friction in robotic manip-
ulators with gear transmissions. In: ECCOMAS Thematic Conference Multibody
Dynamics (2005)

7. Wojtusch, J.: Development of electronics and control for servo actuators in robotic
applications. In: Diploma Thesis (2011)

	Dynaban, an Open-Source Alternative Firmware for Dynamixel Servo-Motors

