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Abstract. This paper1 presents a brief overview of the design of the
Kid-size humanoid robots from the Rhoban Football Club Robocup team.
It focuses on the description of our existing software, hardware and re-
search projects related to playing soccer autonomously. We emphasize
on the specificities of our team and on recent improvements.

1 Introduction and Last Participations

Rhoban Football Club2 is an on-going robotic project whose team members are
researchers and PhD students at University of Bordeaux (France), CNRS and
Bordeaux INP.

The interest of the team is mainly focused on autonomous legged robots
and their locomotion. Our two leading projects are a small and low cost open
source quadruped robot 3 and a Kid-size humanoid robot with the RoboCup
competition as major ambition (Sigmaban+ platform). In this context, several
prototypes have been built and tested [9,10,8] with a special emphasis on prag-
matic and operational solutions.

The very challenging problem of robots playing autonomous soccer in com-
plex and semi-unconstrained environment has driven the team to propose new
mechanical designs – spine-oriented robot have been tested, low-cost foot pres-
sure sensors are experimented – and software methods – new custom servo-
motors firmware, learning algorithms applied to odometry, motion generation

1 This document contains elements from the previous Team Description Paper, in or-
der to make clear for reviewers which elements have been added or modified since last
year, we color in blue the new or significantly rewritten content. Note that some of
the new content presented in this document comes from [2], which contains more de-
tailed information on the improvement brought to our robots between RoboCup2016
and RoboCup2017.

2 The page of the team is accessible at: http://rhoban.com/robocup2018
3 Metabot Project: http://metabot.cc
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and navigation problems.

Our participation to Robocup 2018, up to the qualification procedure, would
be the seventh one:

2011 (Istanbul): Very first participation of the team at RoboCup competition
under the name SigmaBan Football Club.

2013 (Eindhoven): Second participation under current name Rhoban Football
Club. For the first time, the team was able to submit three robust humanoid
robots without major hardware problem.

2014 (João Pessoa): We took a big step forward by reaching the quarter-finals
and working out a robust walk engine.

2015 (Heifei): We coped pretty well with the new artificial grass and colorless
field. We reached the semi-finals and took the third place of Kid-Size league.

2016 (Leipzig): Finally, we succeed to hit the first place of the Kid-Size league
thanks to our versatile vision pipeline, an improved localization module
through accurate odometry learning and the very beginning of high level
team play strategy described in [1].

2017 (Nagoya): This year again, we managed to take the first place of the
Kid-Size league, thanks to improvements to the vision system and to the
general robustness of the robots, a new walk engine, better high level team
play and strategy, and new tools to make development and debugging easier
as described in [2].

This short paper gives an overview of the Rhoban robots hardware and soft-
ware system in its current state with an emphasis on recent upgrades with the
aim to participate to Robocup 2018 in Montreal, Canada.

Commitment

The Rhoban Football Club commits to participate in RoboCup 2018 in Montreal
(Canada) and to provide a referee knowledgeable of the rules of the Humanoid
League.

2 Hardware Overview

The mechanical structure of the robot is a classic design using 20 degrees of free-
dom: 6 for each leg, 3 for each arm, and 2 for the head (pitch and yaw rotations).
The global shape of the robot is mainly standard 4.

The main innovation of the robot is located in its feet. The feet are no longer
flat but are put on the ground on top of 4 cleats at each foot corner. Only these
cleats are in contact with the ground and ”sink” into the artificial grass. This

4 see the robot specification paper for a more complete description
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greatly improve the stability of the robot walking on the ”soft” turf.

In addition to the ground contact, each cleat is linked to a strain gauge force
sensor. The whole is integrated into the foot with a piece of electronics and the
sensor readings are published on the Dynamixel bus as a virtual device. This low-
cost force sensor allows for computing an evaluation of the center of (vertical)
pressure for each leg. This sensor is greatly useful to stabilize the static kick, the
walk engine and improve the accuracy of the robot’s odometry.

Additionally to the fact of developing our new platform, Sigmaban+5, we
introduce three significant hardware modifications, focusing on robustness.

1. During RoboCup 2016, we broke several of the pressure sensors used in
the feet of our robots. In order to improve robustness we switched to full
Wheatstone bridge, 40 kg rated off the shelf load cells. This change strongly
helped to reduce the burden of robotic maintenance during the competition.

2. We designed an hot-swap power board allowing to switch the batteries with-
out any transition phase, thus removing the need to reboot the robot during
half-time.

3. We changed from an USB3 camera to a gigabyte ethernet camera due to
interference between USB3 and Wi-Fi communication.

3 Vision

Our main vision system has been completely changed in 2017. The method
we used before was mainly based on multiple hand-tailored OpenCV filtering,
but for our purpose, this ”standard” method has reached its limits in terms
of complexity, robustness and maintainability. The new vision pipeline is much
simpler and requires much less hand tuning. Moreover, it also appeared to be
quite robust to the environments changes in luminosity and color.

Regions of interest (ROI) for the ball and the goal posts are extracted from
the full image, using the robot’s state (ground plane projection on the camera
plane) and a kernel convolution on an Integral Image filter. These ROIs are then
classified by a Convolutional Neural Network, see Fig. 1.

One key functionality to this system is the ability to quickly obtain a large
quantity of labeled data. To do so, patches extracted from ROIs were uploaded
on an online tagging tool6 accessible to the public. Tagging was made simple with
a responsive ”Google ReCaptcha” style interface. This tool was used by several
supporters from outside the team and allowed to get thousands of labeled patches
in a matter of a few hours, thus freeing precious time to the team members. A
consensus based approch was used to ensure the quality of the tagged data from
non expert users, as well as a slight gamification of the system to motivate the
users. The project is open source7 and the data is available once registered.

5 See robot specification
6 http://rhoban.com/tagger
7 https://www.github.com/rhoban/tagger
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(a) Score of ROI for goal posts (b) Result of goal posts detection

Fig. 1: Example of ball and goal detection

3.1 Classification

Convolutional Neural Networks (ConvNet) have become the state of the art
methods in various computer vision tasks [7]. Several off-the-shelf very powerful
architectures are available such as [12,13] but unfortunately none were usable
in the very limited embedded computers of our robots. We thus designed our
custom ConvNet using a c++ library with no external dependencies 8. The aim
of the approach was to design a minimal architecture able to classify ball and
goal post patches with at least 95% accuracy.
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Fig. 2: Architecture of the reduced ConvNet used for ball classification in the
RoboCup 2017

After some hand-tuning we obtained a quite small network (cf. Fig. 2) able
to classify small 16 × 16 × 3 patches with good results (cf. Table 1).

This architecture was used both for ball and goal post classification, with the
small difference that the goal network has only 16 feature maps.

8 https://github.com/tiny-dnn/tiny-dnn

4

https://github.com/tiny-dnn/tiny-dnn


nb training/validation Learning rate Accuracy

Ball 7400/1500 0.013 96.8%
Posts 13500/2500 0.0425 96.92%

Table 1

4 Walk Engine

Last year, our walk engine has been improved to a new version, QuinticWalk9,
leading to a smoother and stabler motion. This new walk engine follows the same
principles as the old one [14] but with many details updated.

As introduced by [3], the movement is open loop and does not use any ZMP
criterion or dynamics modeling. The shapes of target trajectories are built geo-
metrically from a set of parameters in the Cartesian space. All target joint posi-
tions are then computed through an inverse kinematics of the legs of the robot.
These parameters are manually tuned on the physical humanoid robot (trials
and errors) until a fast and balanced motion is achieved. The main changes are
detailed in [2].

Thanks to this new walk engine, the displacement of the robot is qualitatively
far stabler than before, especially on our bigger robots. For example, the lateral
steps do not trigger constantly the stabilization module anymore (see [11]) which
was required to prevent the robot from falling.

However, the effects of the Runge phenomenon can be observed on some parts
of the trajectories. The current implementation could be improved by replacing
the polynomial splines by the optimal bang-bang jerk control developed by [5].

5 Localization

Our localization module is based on a particle filter which uses 3000 particles. It
uses information from the referee, the vision module but also odometry in order
to ensure a satisfying accuracy for high-level decision making.

The information provided by the referee allows to provide a reasonable idea
of the position of the robot at kick-offs, drop balls or when a robot enters the
field after a game stoppage. The pressure sensors allow us to obtain a satisfying
odometry [15] thus allowing to reduce the exploration we use on particles and
improving accuracy.

The visual features used to score the different particles are limited to the
base of the goal posts and the corner of the field of play.

9 Source code available at: https://github.com/RhobanProject/Model/tree/

master/QuinticWalk
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6 High-Level Decision Making

6.1 Finite state machines

The behaviour of the robot is designed using finite state machines. Transition
between different states are based on various information such as game status,
time spent in current state or information from the localization module.

Since debugging complex state machines based on all the information received
by the robot is a difficult and tedious task, we can run our strategy module based
on fake information. Thus, we allow to test quickly multiple situations without
requiring to reproduce them in the real world. We also designed a tool named
BehaviorViewer which can be used to monitor the state of the robot, but also
to modify the current state by changing the positions of the ball, the robot or
obstacles, see Fig. 3. Enabling easy and quick testing of complex features has
prooved to be a valuable asset during the last competition.

Fig. 3: An example of situation in the BehaviorViewer involving a robot playing
with the ball, obstacles, trajectory and vision cone. Image from [2].

6.2 Ball Approach

Most of the game is spent with robots trying to reach a suitable position to
perform a kick, more specifically, placing the ball accurately in presence of all
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the constraints (perception and action noise) takes a significant amount of time.
Our team used learning methods based on continuous state and action Markov
decision processes to act more efficiently. By learning a predictive motion model
of the robot and computing offline optimization of the policy we manage to
obtain more satisfying policies in the real world, see [6].

6.3 Kicks strategies

Always kicking toward the center of the opposite goal is unsatisfying, especially
when the ball is located nearby a corner of the field on the opponent half. It is also
difficult to come up with satisfying heuristics based on geometrical approaches.
Therefore, we model the choice of the kick as a Markov Decision Problem and
we find the kicks minimizing the time required to score a goal using the Value
Iteration algorithm [4].

This approach of the problem also allow us to include expert knowledge in
the reward function in order to avoid kicking at the center of the goal where we
usually find the opposite goalie.

We found that the direction of the blade of the grass had a strong effect
on the distance traveled by the ball during RoboCup 2017, therefore we added
a simple model of the grass to our problem and obtained two different kicking
strategies, one for each half-time.

6.4 Teamplay

At anytime, we consider that the robot which is closest to the ball is the kicker.
It shares with other robots the position he expects the ball to be after his kick.
In order to reduce the time required for the next kick, they can try to position
nearby the kick target, thus making it look like a pass. On the other hand, they
can also try to position between the ball and their goal in a defensive manner.
We can choose how many robots play defensively or agressively by tuning up
some parameters to adapt to the opponent team.
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1. Julien Allali, Louis Deguillaume, Rémi Fabre, Loic Gondry, Ludovic Hofer, Olivier
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